Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
AIR
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Christian Fischer Pedersen
AIR
Commits
ad16f606
Commit
ad16f606
authored
3 years ago
by
thecml
Browse files
Options
Downloads
Patches
Plain Diff
made alarm script, adjusted some settings
parent
86e3af59
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ml/src/data/make_survival_data.py
+125
-0
125 additions, 0 deletions
ml/src/data/make_survival_data.py
with
125 additions
and
0 deletions
ml/src/data/make_survival_data.py
0 → 100644
+
125
−
0
View file @
ad16f606
#!/usr/bin/env python
from
tools
import
file_reader
,
file_writer
,
preprocessor
from
pathlib
import
Path
import
pandas
as
pd
import
numpy
as
np
import
paths
as
pt
import
yaml
def
main
():
df
=
file_reader
.
read_pickle
(
pt
.
INTERIM_DATA_DIR
,
'
ats.pkl
'
)
with
open
(
Path
.
joinpath
(
pt
.
CONFIGS_DIR
,
"
data.yaml
"
),
'
r
'
)
as
stream
:
settings
=
yaml
.
safe_load
(
stream
)
ats_delimiter
=
settings
[
'
ats_delimiter
'
]
df
[
'
DevISOClass
'
]
=
df
[
'
DevISOClass
'
].
apply
(
lambda
x
:
x
[:
ats_delimiter
])
# limit ats class
df
=
df
[[
'
CitizenId
'
,
'
BirthYear
'
,
'
Gender
'
,
'
LendDate
'
,
'
ReturnDate
'
,
'
DevISOClass
'
]]
df
=
df
.
fillna
(
df
.
LendDate
.
max
())
# replace invalid return dates with latest obs lend date
df
=
df
.
loc
[
df
[
'
ReturnDate
'
]
>=
df
[
'
LendDate
'
]]
# return date must same or later than lend date
# Merge loans based on ats, lend date and return date
df
=
df
.
reset_index
(
drop
=
True
).
sort_values
(
by
=
[
'
CitizenId
'
,
'
LendDate
'
])
subset_cols
=
[
'
CitizenId
'
,
'
DevISOClass
'
]
mask_first
=
~
df
.
duplicated
(
subset
=
subset_cols
,
keep
=
'
first
'
)
mask_last
=
~
df
.
duplicated
(
subset
=
subset_cols
,
keep
=
'
last
'
)
hu_first
=
df
[
mask_first
].
loc
[:,
subset_cols
+
[
'
LendDate
'
]]
hu_last
=
df
[
mask_last
].
loc
[:,
[
'
CitizenId
'
,
'
BirthYear
'
,
'
Gender
'
,
'
DevISOClass
'
,
'
ReturnDate
'
]]
merged
=
pd
.
merge
(
hu_first
,
hu_last
,
on
=
subset_cols
)[[
'
CitizenId
'
,
'
BirthYear
'
,
'
Gender
'
,
'
DevISOClass
'
,
'
LendDate
'
,
'
ReturnDate
'
]]
df
=
merged
.
reset_index
().
sort_values
([
'
CitizenId
'
,
'
LendDate
'
]).
drop
([
'
index
'
],
axis
=
1
)
# Calculate time diff between lends
df
[
'
DeltaLends
'
]
=
df
.
sort_values
([
'
CitizenId
'
,
'
LendDate
'
])
\
.
groupby
([
'
CitizenId
'
])[
'
LendDate
'
]
\
.
diff
().
dt
.
days
.
fillna
(
0
).
astype
(
int
)
# Tag alarm lends, save alarm citizens and filter subsequent lends
alarm_ats
=
"
222718
"
df
[
'
IsAlarmLend
'
]
=
df
.
apply
(
lambda
x
:
1
if
alarm_ats
in
x
[
'
DevISOClass
'
]
else
0
,
axis
=
1
)
alarm_citizen_ids
=
list
(
df
.
loc
[
df
[
'
IsAlarmLend
'
]
==
1
][
'
CitizenId
'
])
alarm_dict
=
dict
(
df
.
loc
[
df
[
'
IsAlarmLend
'
]
==
1
][[
'
CitizenId
'
,
'
DeltaLends
'
]].
values
)
df
[
'
GetsAlarm
'
]
=
df
[
'
CitizenId
'
].
apply
(
lambda
x
:
1
if
x
in
alarm_citizen_ids
else
0
)
df
=
df
[
df
.
groupby
(
'
CitizenId
'
).
IsAlarmLend
.
transform
(
lambda
s
:
s
.
ne
(
1
).
cumprod
().
astype
(
bool
))]
# Make features
lends
=
df
[[
'
CitizenId
'
,
'
DevISOClass
'
,
'
LendDate
'
,
'
ReturnDate
'
]]
lends
[
'
LendDiff
'
]
=
lends
[
'
LendDate
'
]
-
lends
[
'
ReturnDate
'
]
loan_period
=
lends
.
groupby
(
'
CitizenId
'
)[
'
LendDiff
'
].
apply
(
lambda
x
:
abs
(
x
.
mean
().
total_seconds
())
//
(
24
*
3600
)).
reset_index
()
number_ats
=
lends
.
groupby
(
'
CitizenId
'
)[
'
DevISOClass
'
].
count
().
reset_index
()
ats_concat
=
lends
.
groupby
(
'
CitizenId
'
)[
'
DevISOClass
'
].
apply
(
'
,
'
.
join
).
reset_index
()
max_lend_date
=
lends
.
groupby
(
'
CitizenId
'
).
apply
(
lambda
x
:
x
[
'
LendDate
'
].
max
()).
reset_index
()
max_return_date
=
lends
.
groupby
(
'
CitizenId
'
).
apply
(
lambda
x
:
x
[
'
ReturnDate
'
].
max
()).
reset_index
()
loan_period
=
loan_period
.
rename
(
columns
=
{
'
LendDiff
'
:
'
LoanPeriod
'
})
number_ats
=
number_ats
.
rename
(
columns
=
{
'
DevISOClass
'
:
'
NumberAts
'
})
ats_concat
=
ats_concat
.
rename
(
columns
=
{
'
DevISOClass
'
:
'
Ats
'
})
max_lend_date
=
max_lend_date
.
rename
(
columns
=
{
0
:
'
MaxLendDate
'
})
max_return_date
=
max_return_date
.
rename
(
columns
=
{
0
:
'
MaxReturnDate
'
})
df
=
df
.
drop_duplicates
(
subset
=
[
'
CitizenId
'
]).
reset_index
(
drop
=
True
)
df
=
df
.
drop
([
'
DevISOClass
'
,
'
DeltaLends
'
,
'
IsAlarmLend
'
,
'
LendDate
'
,
'
ReturnDate
'
],
axis
=
1
)
# Merge dataframes
df
=
df
.
set_index
(
'
CitizenId
'
)
loan_period
=
loan_period
.
set_index
(
'
CitizenId
'
)
ats_concat
=
ats_concat
.
set_index
(
'
CitizenId
'
)
number_ats
=
number_ats
.
set_index
(
'
CitizenId
'
)
max_lend_date
=
max_lend_date
.
set_index
(
'
CitizenId
'
)
max_return_date
=
max_return_date
.
set_index
(
'
CitizenId
'
)
df
=
pd
.
concat
([
df
,
loan_period
,
ats_concat
,
number_ats
,
max_lend_date
,
max_return_date
],
axis
=
1
,
sort
=
False
).
reset_index
()
# Calculate delta between lend and return date
df
[
'
DeltaLendReturn
'
]
=
(
df
[
'
MaxReturnDate
'
]
-
df
[
'
MaxLendDate
'
]).
dt
.
days
# Update dataframe with citizens who get an alarm
def
apply_delta_alarm
(
citizen_id
,
alarm_dict
):
if
citizen_id
in
alarm_dict
:
return
alarm_dict
[
citizen_id
]
else
:
return
0
df
[
'
DeltaAlarm
'
]
=
df
.
apply
(
lambda
x
:
apply_delta_alarm
(
x
[
'
CitizenId
'
],
alarm_dict
),
axis
=
1
)
# Sort citizens between alarm and no alarm
df_gets_alarm
=
df
.
loc
[
df
[
'
GetsAlarm
'
]
==
1
][[
'
CitizenId
'
,
'
DeltaAlarm
'
]]
df_gets_no_alarm
=
df
.
loc
[
df
[
'
GetsAlarm
'
]
==
0
][[
'
CitizenId
'
,
'
DeltaLendReturn
'
]]
# Assign event and merge citizens
y_df
=
pd
.
DataFrame
()
df_gets_alarm
=
df_gets_alarm
.
reset_index
(
drop
=
True
)
df_gets_alarm
=
df_gets_alarm
.
rename
(
columns
=
{
'
DeltaAlarm
'
:
'
Days
'
})
df_gets_alarm
[
'
Event
'
]
=
pd
.
Series
([
True
for
_
in
range
(
len
(
df_gets_alarm
.
index
))])
y_df
=
y_df
.
append
(
df_gets_alarm
)
df_gets_no_alarm
=
df_gets_no_alarm
.
reset_index
(
drop
=
True
)
df_gets_no_alarm
=
df_gets_no_alarm
.
rename
(
columns
=
{
'
DeltaLendReturn
'
:
'
Days
'
})
df_gets_no_alarm
[
'
Event
'
]
=
pd
.
Series
([
False
for
_
in
range
(
len
(
df_gets_no_alarm
.
index
))])
y_df
=
y_df
.
append
(
df_gets_no_alarm
)
y_df
=
y_df
[[
'
CitizenId
'
,
'
Event
'
,
'
Days
'
]]
# Remove aux variables from x_df
df
=
df
[[
'
CitizenId
'
,
'
BirthYear
'
,
'
Gender
'
,
'
LoanPeriod
'
,
'
NumberAts
'
,
'
Ats
'
]]
# Sort X and y by citizen id
x_df
=
df
.
sort_values
(
by
=
'
CitizenId
'
).
reset_index
(
drop
=
True
)
y_df
=
y_df
.
sort_values
(
by
=
'
CitizenId
'
).
reset_index
(
drop
=
True
)
# Drop citizen id
x_df
=
x_df
.
drop
(
'
CitizenId
'
,
axis
=
1
)
y_df
=
y_df
.
drop
(
'
CitizenId
'
,
axis
=
1
)
# Prepare data y and x
ats_resolution
=
settings
[
'
ats_resolution
'
]
data_y
=
np
.
array
(
list
(
tuple
(
x
)
for
x
in
y_df
.
to_numpy
()),
dtype
=
[(
'
Status
'
,
'
bool
'
),
(
'
Days_to_alarm
'
,
'
>i4
'
)])
data_x
=
preprocessor
.
split_cat_columns
(
x_df
,
col_to_split
=
'
Ats
'
,
tag
=
'
Ats
'
,
resolution
=
ats_resolution
)
file_writer
.
write_array
(
data_y
,
pt
.
PROCESSED_DATA_DIR
,
"
alarm_labels.npy
"
)
file_writer
.
write_csv
(
data_x
,
pt
.
PROCESSED_DATA_DIR
,
"
alarm_features.csv
"
)
if
__name__
==
"
__main__
"
:
main
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment