Skip to content
Snippets Groups Projects
Commit 96687cae authored by Christian Marius Lillelund's avatar Christian Marius Lillelund
Browse files

improved some code references

parent a1a6b918
No related branches found
No related tags found
No related merge requests found
Pipeline #86651 passed
This diff is collapsed.
......@@ -43,7 +43,7 @@ def main():
"scale_pos_weight": scale_pos_weight,
"use_label_encoder": False,
"learning_rate": 0.07,
"seed": 0
"random_state": 0
}
model = xgb.XGBClassifier(**params)
......
......@@ -5,7 +5,6 @@ from tools import file_writer, data_loader
from sklearn.model_selection import StratifiedKFold
import xgboost as xgb
from sklearn.metrics import accuracy_score
import xgboost as xgb
import pandas as pd
from utility.metrics import gini_xgb
import shap
......@@ -72,8 +71,7 @@ def get_best_shap_features(X: np.ndarray, y: np.ndarray,
eval_metric='logloss',
use_label_encoder=False,
n_jobs=-1,
random_state=0,
seed=seed)
random_state=seed)
acc_score_list = list()
for i, (train_index, test_index) in enumerate(kf.split(X, y)):
......
......@@ -55,7 +55,7 @@ def main(dataset_version : str = 'emb'):
"use_label_encoder": False,
"learning_rate": 0.07,
"eval_metric": "logloss",
"seed": 0
"random_state": 0
}
model = xgb.XGBClassifier(**params)
......
......@@ -61,7 +61,7 @@ class XgbClassifier(BaseClassifer):
"max_depth": 4,
"scale_pos_weight": scale_pos_weight,
"objective": "binary:logistic",
"seed": 0,
"random_state": 0,
"use_label_encoder": False,
"eval_metric": 'logloss'}
return xgb.XGBClassifier(**params)
......
import numpy as np
import pandas as pd
import paths as pt
from sklearn.model_selection import GridSearchCV
from xgboost import XGBClassifier
from tools import data_loader, file_writer
from tools import data_loader
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score, accuracy_score
from sklearn.model_selection import cross_validate, cross_val_score
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
from pathlib import Path
import paths as pt
......
import numpy as np
import pandas as pd
import paths as pt
from sklearn.model_selection import GridSearchCV
from xgboost import XGBClassifier
from tools import data_loader, file_writer
from tools import data_loader
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score, accuracy_score
from imblearn.pipeline import make_pipeline, Pipeline
from imblearn.pipeline import Pipeline
from imblearn.over_sampling import ADASYN
import matplotlib.pyplot as plt
from pathlib import Path
......
import numpy as np
import pandas as pd
import paths as pt
import xgboost as xgb
from sklearn.model_selection import GridSearchCV
from tools import data_loader, file_writer
from tools import data_loader
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score, accuracy_score
from sklearn.model_selection import cross_validate, cross_val_score
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
from pathlib import Path
import paths as pt
import yaml
import xgboost as xgb
def main():
with open(Path.joinpath(pt.CONFIGS_DIR, "settings.yaml"), 'r') as stream:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment