Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DL Object Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jakob Bjørn Hyldgaard
DL Object Detection
Commits
73d52dce
Commit
73d52dce
authored
2 years ago
by
Jakob
Browse files
Options
Downloads
Patches
Plain Diff
added avg validation
parent
2045bb58
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Yolo_train.py
+75
-40
75 additions, 40 deletions
Yolo_train.py
utils.py
+5
-3
5 additions, 3 deletions
utils.py
with
80 additions
and
43 deletions
Yolo_train.py
+
75
−
40
View file @
73d52dce
...
...
@@ -31,44 +31,14 @@ transform = transforms.Compose([
])
SAVE_EVERY
=
2
batch_size
=
32
trainSet
=
CocoDataSet
(
"
./data/train2014
"
,
"
./data/labels/train2014
"
,
transform
,
1
)
trainLoader
=
DataLoader
(
trainSet
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
)
valSet
=
CocoDataSet
(
"
./data/val2014
"
,
"
./data/labels/val2014
"
,
transform
,
1
)
valLoader
=
DataLoader
(
valSet
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
)
yoloNetwork
=
Yolo_v1_fcs
(
1280
*
7
*
7
)
# CUDA setup guide - https://www.youtube.com/watch?v=GMSjDTU8Zlc
device
=
torch
.
device
(
'
cuda:0
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
# convert model to cuda if available
if
torch
.
cuda
.
is_available
():
encoder
.
to
(
'
cuda
'
)
yoloNetwork
.
fcs
.
to
(
'
cuda
'
)
#Loss stuff:
criterion
=
YoloLoss
()
optimizer
=
optim
.
Adam
(
yoloNetwork
.
parameters
(),
lr
=
0.0005
)
#, momentum=0.9)
if
(
len
(
sys
.
argv
)
>
1
):
if
(
sys
.
argv
[
1
]
==
"
--load-model
"
):
save_file
=
sys
.
argv
[
2
]
utils
.
load_YoloModel_and_optimizer
(
yoloNetwork
,
optimizer
,
save_file
)
# model, optimizer = utils.load_model_and_optimizer(save_file)
for
epoch
in
range
(
2
):
def
train_one_epoch
(
yolo_network
,
train_loader
):
running_loss
=
[]
for
i
,
data
in
enumerate
(
train
L
oader
):
for
i
,
data
in
enumerate
(
train
_l
oader
):
# get the inputs; data is a list of [inputs, labels]
if
(
i
==
50
):
break
inputs
,
labels
=
data
[
0
].
to
(
device
),
data
[
1
].
to
(
device
)
# zero the parameter gradients
...
...
@@ -76,7 +46,7 @@ for epoch in range(2):
# forward + backward + optimize
inputs
=
encoder
(
inputs
)
outputs
=
yolo
N
etwork
(
inputs
)
outputs
=
yolo
_n
etwork
(
inputs
)
loss
=
criterion
(
outputs
,
labels
)
loss
.
backward
()
optimizer
.
step
()
...
...
@@ -85,14 +55,79 @@ for epoch in range(2):
running_loss
.
append
(
loss
.
item
())
# if epoch % 3 == 0:
if
i
%
5
==
0
and
not
i
==
0
:
if
i
%
2
5
==
0
and
not
i
==
0
:
print
(
f
'
[
{
epoch
+
1
}
,
{
i
+
1
:
5
d
}
] loss:
{
sum
(
running_loss
)
/
(
i
+
1
)
}
'
)
checkpoint_state
=
{
"
state_dict
"
:
yoloNetwork
.
fcs
.
state_dict
(),
"
optimizer
"
:
optimizer
.
state_dict
()}
save_name
=
utils
.
save_model
(
checkpoint_state
)
print
(
f
"
Saved model as
'
{
save_name
}
'"
,
end
=
"
\n\n
"
)
# utils.save_model(yolo_network, optimizer)
if
i
%
2000
==
1999
:
# print every 2000 mini-batches
print
(
f
'
[
{
epoch
+
1
}
,
{
i
+
1
:
5
d
}
] loss:
{
sum
(
running_loss
)
/
2000
:
.
3
f
}
'
)
running_loss
=
0.0
if
__name__
==
'
__main__
'
:
EPOCHS
=
5
BATCH_SIZE
=
32
best_avg_val_loss
=
float
(
"
inf
"
)
print
(
"
creating train dataset and loader
"
)
train_set
=
CocoDataSet
(
"
./data/train2014
"
,
"
./data/labels/train2014
"
,
transform
,
1
)
train_loader
=
DataLoader
(
train_set
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
num_workers
=
0
)
print
(
"
creating val dataset and loader
"
)
val_set
=
CocoDataSet
(
"
./data/val2014
"
,
"
./data/labels/val2014
"
,
transform
,
1
)
val_loader
=
DataLoader
(
val_set
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
num_workers
=
0
)
yolo_network
=
Yolo_v1_fcs
(
1280
*
7
*
7
)
# CUDA setup guide - https://www.youtube.com/watch?v=GMSjDTU8Zlc
device
=
torch
.
device
(
'
cuda:0
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
# convert model to cuda if available
if
torch
.
cuda
.
is_available
():
encoder
.
to
(
'
cuda
'
)
yolo_network
.
fcs
.
to
(
'
cuda
'
)
#Loss stuff:
criterion
=
YoloLoss
()
optimizer
=
optim
.
Adam
(
yolo_network
.
parameters
(),
lr
=
0.001
)
#, momentum=0.9)
if
(
len
(
sys
.
argv
)
>
1
):
if
(
sys
.
argv
[
1
]
==
"
--load-model
"
):
save_file
=
sys
.
argv
[
2
]
utils
.
load_YoloModel_and_optimizer
(
yolo_network
,
optimizer
,
save_file
)
# model, optimizer = utils.load_model_and_optimizer(save_file)
for
epoch
in
range
(
EPOCHS
):
print
(
f
"
__Epoch
{
epoch
+
1
}
__
"
)
yolo_network
.
train
(
True
)
train_one_epoch
(
yolo_network
,
train_loader
)
yolo_network
.
train
(
False
)
running_val_loss
=
0
for
i
,
val_data
in
enumerate
(
val_loader
):
if
(
i
==
25
):
break
inputs
,
labels
=
val_data
[
0
].
to
(
device
),
val_data
[
1
].
to
(
device
)
inputs
=
encoder
(
inputs
)
outputs
=
yolo_network
(
inputs
)
val_loss
=
criterion
(
outputs
,
labels
)
val_loss
.
backward
()
running_val_loss
+=
val_loss
avg_val_loss
=
running_val_loss
/
(
i
+
1
)
if
(
avg_val_loss
<
best_avg_val_loss
):
print
(
f
"
New best avg. validation loss:
{
avg_val_loss
}
"
)
best_avg_val_loss
=
avg_val_loss
utils
.
save_model
(
yolo_network
,
optimizer
)
print
(
'
Finished Training
'
)
\ No newline at end of file
print
(
'
Finished Training
'
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
utils.py
+
5
−
3
View file @
73d52dce
...
...
@@ -9,7 +9,7 @@ def predicted_bb_to_draw(b):
"""
return
(
b
[
0
]
-
b
[
2
]
/
2
,
b
[
1
]
-
b
[
3
]
/
2
,
*
b
[
2
:]
)
def
save_model
(
state
,
file_name
=
None
,
folder
=
fr
"
saved_models\{datetime.strftime(datetime.now(),
'
%Y_%m_%d
'
)}
"
):
def
save_model
(
yolo_network
,
optimizer
,
file_name
=
None
,
folder
=
fr
"
saved_models\{datetime.strftime(datetime.now(),
'
%Y_%m_%d
'
)}
"
):
"""
Save the model
based on https://www.youtube.com/watch?v=g6kQl_EFn84
...
...
@@ -18,11 +18,13 @@ def save_model(state, file_name=None, folder=fr"saved_models\{datetime.strftime(
file name should be .pth.tar
if no file name is given it will default to the time of the save in the format
"
hour_minute_second
"
"""
state
=
{
"
state_dict
"
:
yolo_network
.
fcs
.
state_dict
(),
"
optimizer
"
:
optimizer
.
state_dict
()}
if
file_name
is
None
:
file_name
=
fr
"
{
folder
}
\{datetime.strftime(datetime.now(),
'
%H_%M_%S
'
)}.pth.tar
"
torch
.
save
(
state
,
file_name
)
return
file_name
print
(
f
"
Saved model as
'
{
file_name
}
'"
,
end
=
"
\n\n
"
)
def
load_YoloModel_and_optimizer
(
YoloModel
,
optimizer
,
load_file
,
folder
=
fr
"
saved_models\{datetime.strftime(datetime.now(),
'
%Y_%m_%d
'
)}
"
):
print
(
f
"
___Loading model and optimizer states from
{
load_file
}
___
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment