Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • L LEGO
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • Deployments
    • Deployments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • Repository
  • Wiki
    • Wiki
  • Activity
  • Graph
  • Create a new issue
  • Commits
  • Issue Boards
Collapse sidebar
  • René Søndergaard Nilsson
  • LEGO
  • Wiki
  • Lesson10

Lesson10 · Changes

Page history
Text om noise factors authored May 28, 2015 by Lasse Brøsted Pedersen's avatar Lasse Brøsted Pedersen
Show whitespace changes
Inline Side-by-side
Lesson10.markdown
View page @ db1a5de3
......@@ -88,8 +88,12 @@ The plan is to follow the plan described in [1].
## Position tracking by means of particle filters
500 mm kørt distance. Afstand fra mål ~0.5 mm = dist_err = 0.001
Rotation error ~0.5 degrees. 0.5/360 = 0,00138
The tests to performed to estimate the noise factors was performed at low speeds, on a wooden table covered by a single sheet of paper. The low speed reduces the noise factors because the wheel stops faster, and thus closer to the intended angle, also the low speed reduces the risk the wheel loosing grip of the surface. The wooden table covered by paper also reduces the noise factors, because the surface is homogeneously smooth, without any irregularities which could introduce errors.
The distance noise factor was determined by having the robot perform multiple forward travels of 500 mm. The average distance from the target was ~0.5 mm, thus the distance noise factor was estimated as: 0.5/500 = 0.001.
The angle noise factor was determined by two tests, both performed multiple times. In the first test, the robot perform four 360 degrees rotation. The second test was similar, but reversed the direction of the 2nd and 4th rotation. For both tests, the average deviation was 0.5 degrees, hence the angle noise factor was estimated as: 0.5/360 = 0.00138.
## Conclusion
......
Clone repository
  • Lesson 1
  • Lesson 2
  • Lesson 3
  • Lesson 4
  • Lesson 5
  • Lesson 6
  • Lesson 7
  • Lesson 8 Journal 2
  • Lesson 8
  • Lesson 9
  • Lesson10
  • Lesson11
  • Home