help='Apply Tensor core acceleration to training and inference, requires compute capability of 10.0 or higher.')
help='Apply Tensor core acceleration to training and inference, requires compute capability of 10.0 or higher.')
parser.add_argument('--save_model',type=int,default=5,help='validation interval where models at full size are printed out.')
parser.add_argument('--save_model',type=int,default=500,help='validation interval where models at full size are printed out.')
parser.add_argument('--lr_g',type=float,default=[10**(-5),0.5*10**(-5),10**(-6),0.5*10**(-6),10**(-7),0.5*10**(-7)],nargs='+',help='The start learning rate of the generator')
parser.add_argument('--lr_g',type=float,default=[10**(-5),0.5*10**(-5),10**(-6),0.5*10**(-6),10**(-7),0.5*10**(-7)],nargs='+',help='The staircase learning rates of the generator')
parser.add_argument('--lr_d',type=float,default=[10**(-4),0.5*10**(-4),10**(-5),0.5*10**(-5),10**(-6),0.5*10**(-6)],nargs='+',help='The start learning rate of the descriminator')
parser.add_argument('--lr_d',type=float,default=[10**(-4),0.5*10**(-4),10**(-5),0.5*10**(-5),10**(-6),0.5*10**(-6)],nargs='+',help='The staircase learning rates of the discriminator')
parser.add_argument('--lr_e',type=float,default=[10**(-4),0.5*10**(-4),10**(-5),0.5*10**(-5),10**(-6),0.5*10**(-6)],nargs='+',help='The start learning rate of the encoder')
parser.add_argument('--lr_e',type=float,default=[10**(-4),0.5*10**(-4),10**(-5),0.5*10**(-5),10**(-6),0.5*10**(-6)],nargs='+',help='The staircase learning rates of the encoder')
parser.add_argument('--ctf',dest='ctf',action='store_true',default=False,help='Use CTF parameters for model.')
parser.add_argument('--ctf',dest='ctf',action='store_true',default=False,help='Use CTF parameters for model.')
...
@@ -38,20 +38,18 @@ def main():
...
@@ -38,20 +38,18 @@ def main():
parser.add_argument('--steps',type=int,default=[10000,10000,10000,10000,10000],nargs='+',help='how many epochs( runs through the dataset) before termination')
parser.add_argument('--steps',type=int,default=[10000,10000,10000,10000,10000],nargs='+',help='how many epochs( runs through the dataset) before termination')
parser.add_argument('--l_reg',type=float,default=0.01,help='the lambda regulization of the diversity score loss if the noise generator is active')
parser.add_argument('--l_reg',type=float,default=0.01,help='the lambda regulization of the diversity score loss if the noise generator is active')
parser.add_argument('--m_batch_size',type=int,default=25,help='the batch size to make the 3D model')
parser.add_argument('--frames',type=int,default=4,help='number of models to generate from each cluster')
parser.add_argument('--frames',type=int,default=4,help='number of models to generate from each cluster')
parser.add_argument('--umap_p_size',type=int,default=100,help='The UMAP size to train the umap model. It is trained on the CPU in parallel')
parser.add_argument('--umap_p_size',type=int,default=10000,help='The number of feature vectors to use for training Umap')
parser.add_argument('--umap_t_size',type=int,default=10000,help='The number of feature vectors to use for intermediate evaluation of clusters in the umap algorithm')
parser.add_argument('--neighbours',type=int,default=30,help='number of neighbours in the graph creation algorithm')
parser.add_argument('--neighbours',type=int,default=30,help='number of neighbours in the graph creation algorithm')
parser.add_argument('--t_res',type=int,default=None,choices=[32,64,128,256,512],help='number of neighbours in the graph creation algorithm')
parser.add_argument('--t_res',type=int,default=None,choices=[32,64,128,256,512],help='The maximum resolution to train the model on')
parser.add_argument('--minimum_size',type=int,default=500,help='the minimum size before its considered an actual cluster, anything else less is considered noise and will be discarded')
parser.add_argument('--minimum_size',type=int,default=500,help='the minimum size before its considered an actual cluster, anything else less is considered noise')