kernel.py 10.3 KB
Newer Older
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from abc import ABC, abstractmethod

from scipy.spatial.distance import pdist, cdist, squareform

class kernel(ABC):
    def __init__(self):
        self._theta = None

    @abstractmethod
    def kernel(self):
        pass

#    @abstractmethod
#    def kernel_vector(self):
#        pass

#    @abstractmethod
#    def kernel_matrix(self):
#        pass

    @abstractmethod
    def kernel_jacobian(self):
        pass

    @abstractmethod
    def kernel_hyperparameter_gradient(self):
        pass

    @property
    def theta(self):
        return self._theta

    @theta.setter
    def theta(self, theta):
        self._theta = theta
    
    def numerical_jacobian(self,x,y, dx=1.e-5):
        if np.ndim(y) == 1:
            y = y.reshape((1,-1))
        nx = len(x)
        ny = y.shape[0]
        f0 = self.kernel(x,y)
        f_jac = np.zeros((ny,nx))
        for i in range(nx):
            x_up = np.copy(x)
            x_down = np.copy(x)
            x_up[i] += 0.5*dx
            x_down[i] -= 0.5*dx
            
            f_up = self.kernel(x_up,y)
            f_down = self.kernel(x_down,y)
            f_jac[:,i] = (f_up - f_down)/dx
        return f_jac

    def numerical_hyperparameter_gradient(self,X, dx=1.e-5):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
57
58
59
        """Calculates the numerical derivative of the kernel with respect to the
        log transformed hyperparameters.
        """
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
60
61
62
63
64
65
66
67
68
69
70
        N_data = X.shape[0]
        theta = np.copy(self.theta)
        N_hyper = len(theta)
        dK_dTheta = np.zeros((N_hyper, N_data, N_data))
        for i in range(N_hyper):
            theta_up = np.copy(theta)
            theta_down = np.copy(theta)
            theta_up[i] += 0.5*dx
            theta_down[i] -= 0.5*dx
            
            self.theta = theta_up
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
71
            K_up = self(X, eval_gradient=False)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
72
            self.theta = theta_down
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
73
            K_down = self(X, eval_gradient=False)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
74
75
76
77
78
79
80
81
            dK_dTheta[i,:,:] = (K_up - K_down)/dx
        return dK_dTheta


class gauss_kernel(kernel):
    def __init__(self, amplitude=10.0, length_scale=10.0, amplitude_bounds=(1e0, 1e3), length_scale_bounds=(1e-1, 1e1)):
        self.amplitude = amplitude
        self.length_scale = length_scale
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
82

Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
83
84
85
        self.amplitude_bounds = amplitude_bounds
        self.length_scale_bounds = length_scale_bounds

Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        self.theta_bounds = np.array([amplitude_bounds, length_scale_bounds])

    def __call__(self, X, eval_gradient=False):
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        d = cdist(X / self.length_scale,
                  X / self.length_scale, metric='sqeuclidean')
        K = self.amplitude * np.exp(-0.5 * d)
        
        if eval_gradient:
            K_gradient = self.kernel_hyperparameter_gradient(X)
            return K, K_gradient
        else:
            return K
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
100
101
102
103
104
105
106
107
108
109
110
        
    def kernel(self, X,Y):
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        if np.ndim(Y) == 1:
            Y = Y.reshape((1,-1))
        d = cdist(X / self.length_scale,
                  Y / self.length_scale, metric='sqeuclidean')
        K = self.amplitude * np.exp(-0.5 * d)
        return K

Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
111
112
113
114
    def kernel_value(self, x,y):
        K = self.kernel(x,y)
        return np.asscalar(K)
    
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
115
    def kernel_vector(self, x,Y):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
116
        K = self.kernel(x,Y).reshape(-1)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        return K

    def kernel_matrix(self, X,Y=None):
        if Y is None:
            d = cdist(X / self.length_scale, X / self.length_scale, metric='sqeuclidean')
        else:
            d = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean')
        K = self.amplitude * np.exp(-0.5 * d)
        return K

    def kernel_jacobian(self, X,Y):
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        if np.ndim(Y) == 1:
            Y = Y.reshape((1,-1))
        K = self.kernel(X,Y).T
        dK_dd = -1./(2*self.length_scale**2)*K
        dd_df = 2*(X - Y)

        dk_df = np.multiply(dK_dd, dd_df)
        return dk_df

    @property
    def theta(self):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
141
142
143
144
        """Returns the log-transformed hyperparameters of the kernel.
        """
        self._theta = np.array([self.amplitude, self.length_scale])
        return np.log(self._theta)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
145
146
147

    @theta.setter
    def theta(self, theta):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
148
149
150
151
152
        """Sets the hyperparameters of the kernel.

        theta: log-transformed hyperparameters
        """
        self._theta = np.exp(theta)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
153
154
        self.amplitude = self._theta[0]
        self.length_scale = self._theta[1]
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
155
    
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
156
157
158
159
160
    def dK_da(self, X):
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        d = cdist(X / self.length_scale,
                  X / self.length_scale, metric='sqeuclidean')
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
161
        dK_da = self.amplitude * np.exp(-0.5 * d)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
162
163
164
165
166
167
168
        return dK_da
        
    def dK_dl(self, X):
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        d = cdist(X / self.length_scale,
                  X / self.length_scale, metric='sqeuclidean')
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
169
        dK_dl = self.amplitude * d * np.exp(-0.5 * d)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
170
171
172
        return dK_dl

    def kernel_hyperparameter_gradient(self, X):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
173
174
175
        """Calculates the derivative of the kernel with respect to the
        log transformed hyperparameters.
        """
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
176
177
178
179
        return np.array([self.dK_da(X), self.dK_dl(X)])
    

class double_gauss_kernel(kernel):
180
    def __init__(self, amplitude=100., amplitude_bounds=(1e1,1e5),
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
181
182
183
                 length_scale1=10.0, length_scale1_bounds=(1e0, 1e3),
                 length_scale2=10.0, length_scale2_bounds=(1e0, 1e3),
                 weight=0.01, weight_bounds=(0.01,0.01),
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
184
                 noise=1e-5, noise_bounds=(1e-5,1e-5)):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
185
186
187
188
        self.amplitude = amplitude
        self.length_scale1 = length_scale1
        self.length_scale2 = length_scale2
        self.weight = weight
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
189
        self.noise = noise
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
190
191
192
193
194

        self.amplitude_bounds = amplitude_bounds
        self.length_scale1_bounds = length_scale1_bounds
        self.length_scale2_bounds = length_scale2_bounds
        self.weight_bounds = weight_bounds
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
195
        self.noise_bounds = noise_bounds
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
196

197
        self.theta_bounds = np.log(np.array([amplitude_bounds, length_scale1_bounds, length_scale2_bounds, weight_bounds, noise_bounds]))
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
198

Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def __call__(self, X, eval_gradient=False):
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        d1 = cdist(X / self.length_scale1,
                  X / self.length_scale1, metric='sqeuclidean')
        d2 = cdist(X / self.length_scale2,
                  X / self.length_scale2, metric='sqeuclidean')
        K = self.amplitude * (np.exp(-0.5 * d1) + self.weight*np.exp(-0.5 * d2) + self.noise*np.eye(X.shape[0]))

        if eval_gradient:
            K_gradient = self.kernel_hyperparameter_gradient(X)
            return K, K_gradient
        else:
            return K
213

Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
214
    def kernel(self, X,Y=None):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
215
216
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
217
218
219
        if Y is None:
            Y = X
        elif np.ndim(Y) == 1:
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
220
221
222
223
224
225
226
227
            Y = Y.reshape((1,-1))
        d1 = cdist(X / self.length_scale1,
                  Y / self.length_scale1, metric='sqeuclidean')
        d2 = cdist(X / self.length_scale2,
                  Y / self.length_scale2, metric='sqeuclidean')
        K = self.amplitude * (np.exp(-0.5 * d1) + self.weight*np.exp(-0.5 * d2))
        return K

Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
228
229
230
231
    def kernel_value(self, x,y):
        K = self.kernel(x,y)
        return np.asscalar(K)
    
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
232
    def kernel_vector(self, x,Y):
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
233
        K = self.kernel(x,Y).reshape(-1)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        return K

    def kernel_matrix(self, X,Y=None):
        if Y is None:
            d = cdist(X / self.length_scale, X / self.length_scale, metric='sqeuclidean')
        else:
            d = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean')
        K = np.exp(-0.5 * d)
        return K

    def kernel_jacobian(self, X,Y):
        """ Jacobian of the kernel with respect to X
        """
        if np.ndim(X) == 1:
            X = X.reshape((1,-1))
        if np.ndim(Y) == 1:
            Y = Y.reshape((1,-1))
        d1 = cdist(X / self.length_scale1,
                   Y / self.length_scale1, metric='sqeuclidean')
        d2 = cdist(X / self.length_scale2,
                   Y / self.length_scale2, metric='sqeuclidean')
        dK1_dd1 = -1/(2*self.length_scale1**2) * np.exp(-0.5 * d1)
        dK2_dd2 = -1/(2*self.length_scale2**2) * np.exp(-0.5 * d2)
        dK_dd = self.amplitude * (dK1_dd1 + self.weight*dK2_dd2)
        dd_df = 2*(X - Y)

        dk_df = np.multiply(dK_dd.T, dd_df)
        return dk_df

    @property
    def theta(self):
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
265
266
267
268
        """Returns the log-transformed hyperparameters of the kernel.
        """
        self._theta = np.array([self.amplitude, self.length_scale1, self.length_scale2, self.weight, self.noise])
        return np.log(self._theta)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
269
270
271

    @theta.setter
    def theta(self, theta):
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
272
273
274
275
276
        """Sets the hyperparameters of the kernel.

        theta: log-transformed hyperparameters
        """
        self._theta = np.exp(theta)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
277
278
279
280
        self.amplitude = self._theta[0]
        self.length_scale1 = self._theta[1]
        self.length_scale2 = self._theta[2]
        self.weight = self._theta[3]
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
281
        self.noise = self._theta[4]
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
282
283
284
285
286
287

    def dK_da(self, X):
        d1 = cdist(X / self.length_scale1,
                   X / self.length_scale1, metric='sqeuclidean')
        d2 = cdist(X / self.length_scale2,
                   X / self.length_scale2, metric='sqeuclidean')
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
288
        dK_da = self.amplitude * (np.exp(-0.5 * d1) + self.weight*np.exp(-0.5 * d2) + self.noise*np.eye(X.shape[0]))
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
289
290
291
292
293
        return dK_da
        
    def dK_dl1(self, X):
        d1 = cdist(X / self.length_scale1,
                   X / self.length_scale1, metric='sqeuclidean')
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
294
        dK_dl1 = self.amplitude*d1 * np.exp(-0.5 * d1)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
295
296
297
298
299
        return dK_dl1

    def dK_dl2(self, X):
        d2 = cdist(X / self.length_scale2,
                   X / self.length_scale2, metric='sqeuclidean')
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
300
        dK_dl2 = self.amplitude*self.weight*d2 * np.exp(-0.5 * d2)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
301
302
303
304
305
        return dK_dl2

    def dK_dw(self, X):
        d2 = cdist(X / self.length_scale2,
                   X / self.length_scale2, metric='sqeuclidean')
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
306
        dK_dl2 = self.amplitude*self.weight*np.exp(-0.5 * d2)
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
307
308
        return dK_dl2

Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
309
    def dK_dn(self, X):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
310
        dK_dn = self.amplitude * self.noise * np.eye(X.shape[0])
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
311
312
        return dK_dn

Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
313
    def kernel_hyperparameter_gradient(self, X):
Malthe Kjær Bisbo's avatar
Malthe Kjær Bisbo committed
314
315
316
        """Calculates the derivative of the kernel with respect to the
        log transformed hyperparameters.
        """
Malthe Kjær Bisbo's avatar
update    
Malthe Kjær Bisbo committed
317
        return np.array([self.dK_da(X), self.dK_dl1(X), self.dK_dl2(X), self.dK_dw(X), self.dK_dn(X)])