<!DOCTYPE html>
<html>
<!-- AUTOGENERATED HTML from CourseBuilder, CEF -->
<meta http-equiv='Content-Type' content='text/html; charset=utf-8'/>
<body style='font-family: times new roman, times, serif;font-size: 12pt;color: #424222;'>






<h3>Hands-on Machine Learning <span style='font-family: courier new, courier;'>[HOML]</span></h3>

<p style='margin-left: 30px;'>
<img src='https://itundervisning.ase.au.dk/ITMAL_E21/Html/Figs/book_homl.jpg' alt='Hands-on Machine Learning with Scikit-Learn (front image)'>

<br> <i>Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems</i>
<br>

<br> Aurélien Géron
<br> O&#x27;Reilly / Wiley, 2019, 2.ed.
<br> ISBN: 9781492032649
<br> <span style='font-family: courier new, courier;'><a href='https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/' rel='noopener' target='_blank'>ww.oreilly.com/library/view/hands-on-machine-learning/9781492032632/</a></span>
</p>

<p><i>NOTE 1:</i> dette er anden udgave (Second Edition/2.ed) af Géron&#x27;s &quot; Hands-on&quot;,
undgå at bruge førsteudgaven, idet den benytter TensorFlow direkte istedet for
Keras, og desuden har flere mangler.</p>

<p><i>NOTE 2:</i> i PDF udgaven (Early Release, June 2019, 2019-04-22: Fifth Release)
svare sidetal og nogle kaptitler ikke til den officielle bog udgave ovenfor!</p>

<h3>Deep Learning [DL]</h3>

<p style='margin-left: 30px;'>

<img src='https://itundervisning.ase.au.dk/ITMAL_E21/Html/Figs/book_dl.jpg' alt='Deep Learning (front image)'>

<br> <i>Deep Learning</i>
<br>

<br> Ian Goodfellow, Yoshua Bengio, Aaron Courville
<br> The MIT Press
<br> November 18, 2016
<br> Hardcover: 775 pages
<br> ISBN-10: 0262035618
<br> ISBN-13: 978-0262035613
<br> <span style='font-family: courier new, courier;'><a href='http://www.deeplearningbook.org/' rel='noopener' target='_blank'>ww.deeplearningbook.org/</a></span>
</p>

<p><i>NOTE:</i> ikke obligatorisk, kun få afsnit og figure bruges herfra.  (Bog god til
videregående Neural Netværks-teori og meget brugt i ML sammenhænge.)</p>





</body>
</html>