Commit 1601a5fa authored by Carsten Eie Frigaard's avatar Carsten Eie Frigaard
Browse files

update

parent 7c99d4c4
%% Cell type:markdown id: tags:
# ITMAL L03
## K-fold CV demo
Code original from
* https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html?highlight=k%20fold#sklearn.model_selection.KFold
%% Cell type:code id: tags:
``` python
import numpy as np
from sklearn.model_selection import KFold
from libitmal import utils as itmalutils
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [-1, -2]])
y = np.array([1, 2, 3, 4, 5])
kf = KFold(n_splits=2) # shuffle=True, random_state=42)
print(f"K-fold CV demo..\n")
print(f"kf={kf}\n")
print(f"Splits on X={kf.get_n_splits(X)}\n")
def PrintXy(X, y, msg=""):
assert X.ndim==2
assert y.ndim==1
assert X.shape[0]==y.shape[0]
itmalutils.PrintMatrix(X, f" X{msg}=")
print("")
itmalutils.PrintMatrix(y, f" y{msg}=")
PrintXy(X, y)
print("\nOK")
```
%%%% Output: stream
K-fold CV demo..
kf=KFold(n_splits=2, random_state=None, shuffle=False)
Splits on X=2
X=[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[-1 -2]]
y=[1 2 3 4 5]
OK
%% Cell type:code id: tags:
``` python
n=0
for train_index, val_index in kf.split(X):
n += 1
print(f"\nITERATION: n={n}\n")
print(f" TRAIN indexes: {train_index}\n VALIDATE indexes: {val_index}\n")
#print(f"type(train_index)={type(train_index)}, train_index.dtype={train_index.dtype}")
X_train, X_val = X[train_index], X[val_index]
y_train, y_val = y[train_index], y[val_index]
PrintXy(X_train, y_train, "_train")
print()
PrintXy(X_val , y_val, "_val ")
```
%%%% Output: stream
ITERATION: n=1
TRAIN indexes: [3 4]
VALIDATE indexes: [0 1 2]
X_train=[[ 7 8]
[-1 -2]]
y_train=[4 5]
X_val =[[1 2]
[3 4]
[5 6]]
y_val =[1 2 3]
ITERATION: n=2
TRAIN indexes: [0 1 2]
VALIDATE indexes: [3 4]
X_train=[[1 2]
[3 4]
[5 6]]
y_train=[1 2 3]
X_val =[[ 7 8]
[-1 -2]]
y_val =[4 5]
%% Cell type:markdown id: tags:
# ITMAL L04
## K-fold CV demo
Code original p89, [HOML].
(CEF: code cleaned up, global calls put into functions, changed `StratifiedKFold` to just `SKFold`)
%% Cell type:code id: tags:
``` python
print("MNIST data get and unpack (slow)..")
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)
print(f" MNIST keys={mnist.keys()}")
print("OK")
```
%%%% Output: stream
MNIST data get and unpack (slow)..
MNIST keys=dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details', 'url'])
OK
%% Cell type:code id: tags:
``` python
import numpy as np
print("Design Matrix setup..")
X, y = mnist["data"], mnist["target"]
y = y.astype(np.uint8)
print(f" X: {X.shape}, y: {y.shape}")
print("Train/test split..")
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
y_train_5 = (y_train == 5)
y_test_5 = (y_test == 5)
print(f" Train: X: {X_train.shape}, y: {y_train.shape}")
print(f" Test : X: {X_test.shape}, y: {y_test_5.shape}")
print("SGD model setup and train..")
from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=42)
sgd_clf.fit(X_train, y_train_5)
print("\nOK")
```
%%%% Output: stream
Design Matrix setup..
X: (70000, 784), y: (70000,)
Train/test split..
Train: X: (60000, 784), y: (60000,)
Test : X: (10000, 784), y: (10000,)
SGD model setup and train..
OK
%% Cell type:code id: tags:
``` python
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
def plot_digit(data):
image = data.reshape(28, 28)
plt.imshow(image, cmap = mpl.cm.binary,
interpolation="nearest")
plt.axis("off")
def TestPredict(n):
some_digit = X_test[n]
ground_truth = y_test_5[n]
plot_digit(some_digit)
y_pred=sgd_clf.predict([some_digit])
print(f" ground_truth={ground_truth}")
print(f" predicted ={y_pred}")
print("Do some predictions..")
TestPredict(42)
TestPredict(45)
print("OK")
```
%%%% Output: stream
Do some predictions..
ground_truth=False
predicted =[False]
ground_truth=True
predicted =[ True]
OK
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
from sklearn.model_selection import KFold
from sklearn.base import clone
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
def PrintScores(y_true, y_pred, i):
assert y_true.shape == y_pred.shape, f"mismatch in shapes, y_true.shape={y_true.shape}, y_pred.shape={y_pred.shape}"
a = accuracy_score (y_true, y_pred)
p = precision_score(y_true, y_pred)
r = recall_score (y_true, y_pred)
F1= f1_score (y_true, y_pred)
prefix = f"FOLD {i:2d}: " if i>=0 else ""
print(f" {prefix}accuracy={a:.2f}, precision={p:.2f}, recall={r:.2f}, F1={F1:.2f}")
def MyKFoldSplit(clf, X, y, kfolds=3, debug=True):
def PrintVarInfo(varname, var):
assert isinstance(var, np.ndarray)
if debug and i==0:
msg = f"type({varname})"
t = f"{type(var)},"
s = f"{varname}.shape"
print(f" {msg:18s}={t:24s} {s:18s}={var.shape}")
i=0
if debug:
print(f"MyKFoldSplit(clf, X, y, kfolds={kfolds})..")
PrintVarInfo("X", X)
PrintVarInfo("y", y)
skfolds = KFold(n_splits=kfolds, random_state=42, shuffle=True)
for train_index, val_index in skfolds.split(X, y):
PrintVarInfo("train_index", train_index)
PrintVarInfo("val_index", val_index)
clone_clf = clone(clf)
X_train_folds = X[train_index]
y_train_folds = y[train_index]
X_val_fold = X[val_index]
y_val_fold = y[val_index]
clone_clf.fit(X_train_folds, y_train_folds)
y_pred = clone_clf.predict(X_val_fold)
PrintScores(y_val_fold, y_pred, i)
i += 1
#n_correct = sum(y_pred == y_val_fold)
#print(n_correct / len(y_pred))
# My : print 0.95035 0.96035 and 0.9604
# Gereon: prints 0.9502, 0.96565 and 0.96495
print("K-fold demo..")
MyKFoldSplit(sgd_clf, X_train, y_train_5, 3)
print("OK")
```
%%%% Output: stream
K-fold demo..
MyKFoldSplit(clf, X, y, kfolds=3)..
type(X) =<class 'numpy.ndarray'>, X.shape =(60000, 784)
type(y) =<class 'numpy.ndarray'>, y.shape =(60000,)
type(train_index) =<class 'numpy.ndarray'>, train_index.shape =(40000,)
type(val_index) =<class 'numpy.ndarray'>, val_index.shape =(20000,)
FOLD 0: accuracy=0.97, precision=0.94, recall=0.70, F1=0.80
FOLD 1: accuracy=0.95, precision=0.67, recall=0.89, F1=0.76
FOLD 2: accuracy=0.97, precision=0.89, recall=0.73, F1=0.80
OK
%% Cell type:code id: tags:
``` python
print("Final test scores..")
print(" train yet a model with all train data..")
sgd_clf.fit(X_train, y_train_5)
print(" predict on test data..")
y_test_5_pred = sgd_clf.predict(X_test)
PrintScores(y_test_5, y_test_5_pred, -1)
print("OK")
```
%%%% Output: stream
Final test scores..
train yet a model with all train data..
predict on test data..
accuracy=0.95, precision=0.66, recall=0.88, F1=0.76
OK
# read men/women height weight data..
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
# Load data - vægt data (kvinder/mænd)
data = np.loadtxt('height_weight.csv', delimiter=';', skiprows=1)
X = data[:,1:3]
y = data[:,0]
#%% plot 2D - "korrelationsplot"
Xmen = X[:5000,:]
plt.scatter(Xmen[:,0], Xmen[:,1], s=1)
plt.xlabel('vægt')
plt.ylabel('højde')
#%% basal statistik
x1 = Xmen[:,0] # vægt
x2 = Xmen[:,1] # højde
m1 = np.mean(x1)
s1 = np.std(x1)
v1 = np.var(x1)
xarr = np.linspace(np.min(x1), np.max(x1), 500)
fig, ax = plt.subplots(2,1, figsize=(10,20))
ax[0].hist(x1, bins=100) # histogram
ax[1].plot(xarr, norm.pdf(xarr, m1, s1)) # prob. dens. func.
#%% korrelation
corrcoef = np.corrcoef(Xmen.T) # obs: rækker=variable, kolonner=samples (modsat normalt..)
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment